
Presenter : Linh Van Ma

Managing CDN DASH Streaming System

2018.01.15

Manual

2

Outline

1. Introduction

2. System Working Flow

3. Testing Scenarios

4. Implemented Functions
• Functions: [1] Server Management. [2] Service Management. [3] Upload server

Management. [4] Client Management.

• Streaming Processes: [1] Fragmenting Uploaded Videos. [2] Dynamic Adaptive

Streaming.

5. Node.js Implementation

1. Introduction (What is it?)

3

1) This system aims to support dynamic adaptive streaming over HTTP (DASH) that enables
high quality streaming of media content over the Internet delivered from conventional HTTP
web servers.
Ø The client selects the segment with the highest bit rate possible that can be downloaded in time for playback without

causing stalls or re-buffering events in the playback.
Ø An MPEG-DASH client can seamlessly adapt to changing network conditions and provide high quality playback with

fewer stalls or re-buffering events.

2) This system is also built to support CDN streaming service.
Ø Each delivery server (CDN) is managed by a main server.
Ø The main server listens streaming request from clients and redirect to CDNs.

3) The system is implemented on Node.js, it can also run on Docker cooperating with FNCP (Future Network
Computing Platform).

1. Introduction (How does it works?)

4

Containing video DASH content.Containing video DASH content.
DASH DASH DASH DASH

DASH Client

Synchronizing DASH file(3)Synchronizing DASH file(3)

+ Admin Page setting
+ DASH server management
+ Admin Page setting
+ DASH server management

+ Transcoding a uploaded video.
+ Synchronizing DASH files

=> Manual Mode
=> Automatic Mode

+ Transcoding a uploaded video.
+ Synchronizing DASH files

=> Manual Mode
=> Automatic Mode

Linux (Ubuntu 14.04)Linux (Ubuntu 14.04)

Docker (v1.12 above)Docker (v1.12 above)

(DASH management, Ad
min setting) Application (

Node.js)

(DASH management, Ad
min setting) Application (

Node.js)

Linux (Ubuntu 14.04)Linux (Ubuntu 14.04)

Docker (v1.12 above)Docker (v1.12 above)

(Uploading, Transcoding
) Application (Node.js)

(Uploading, Transcoding
) Application (Node.js)

node.js start command

node.js start command

Linux (Ubuntu 14.04)Linux (Ubuntu 14.04)

Docker (v1.12 above)Docker (v1.12 above)

(CDN DASH files) Appl
ication (Node.js)

(CDN DASH files) Appl
ication (Node.js)

Linux (Ubuntu 14.04)Linux (Ubuntu 14.04)

Docker (v1.12 above)Docker (v1.12 above)

(Web Browser) Applica
tion (Node.js)

(Web Browser) Applica
tion (Node.js)

VNFM

EMA

EMA

EMA

EMA

docker
start/stop
command

docker
start/stop
command

Main Server

Transcoding at
Upload Server (2)

Upload a Video (
1)

Upload Server

Sending local.json (
5)

DASH Clien
t

Service Chain

Request DASH Content (6)

Looking for the content in total.
json file (7)

Redirect streaming request to
another DASH server (7)

Collect RAM, CPU,
Network measureme
nt in local.json (4)

Optimize video streaming for each device
based on its characteristics (8.2)

Response (8.1)

1. Introduction

5

VNF DataCenter System Overview

EM

EMA VNFM

./cdnManager_start.sh

./cdnManager_stop.sh

Management
Server

EM./cdnUpload_start.sh
./cdnUpload_stop.sh

Data
Server

EM./cdnDelivery_start.sh
./cdnDelivery_stop.sh

Data
Server

Manage

Start/Stop Start/Stop Start/Stop

2. System Working Flow

6

2.1 Server Managed Function

1) This function is implemented on the main server where we manage CDNs.
Ø Managing local performance of CDNs.
Ø Managing network state
Ø Managing geography

ü Sorting CDNs and ordering them in an order.

2) Each CDN is managed by inputing its information, such as IP address, CDN type wherether upload or delivery in a web
form.
Ø CDN information is saved in mysql server Ubuntu.
Ø We can also delete, edit CDN information once the CDN information was stored in the database.

2. System Working Flow

7

2.1 Server Managed Function

1) How does the main server collect data from CDNs?.
Ø Each CDN periodically collects its performance information and stores in a variable (temporary memory, RAM).

Three seconds for local performance, three hundred seconds (five minutes) for network measurement.
Ø Each CDN pericodically check and store multimedia information in a local.json file. (10 seconds)

Ø Each time when the main server receives local performancesort, network, geography, it processes collected
information from CDNs and sorts in an order then saves in server_rank.json.

Ø Each time when the main server receives multimedia information from a CDN, it sotres the information in
ip_list.json file, then gathers data from all CDNs in total.json using botn server_rank.json and ip_list.json.

2. System Working Flow

8

2.1 Server Managed Function

1) Which information save in the JSON files?.
Ø local.json stores an array of multimedia information such as one video information is given as the following.

{
"videoName": "(Paddy_Sun)_Sunflower___Paddy_Sun",
"stream": "http://168.131.39.38:8001//home/nonsense/Desktop/test/cdnnodejs/uploads/_(Paddy_Su/(Paddy_Sun)_Sunflower___Paddy_Sun.mpd",
"stFile": ["(Paddy_Sun)_Sunflo_output144", "(Paddy_Sun)_Sunflo_output240", "(Paddy_Sun)_Sunflo_output360"],
"Filecount": 659,
"listResol": "[108x144] [180x240] [270x360] ",
"maxRel": "270x360"

}
Ø total.json file saves information as the following: {ip, metric, localFiles: local.json}.

2. System Working Flow

9

2.2 Upload Server Managed Function (What is it?)

1) This function is to manage content synchronization between CDNs.
2) It has two synchronization mode which are automatic mode and manual mode.
3) Automatic mode

Ø The main sever finds the best serving server for current coming request from a client then
automatically syncs the video requested content to the best server from servers which have the
content, if the best server does contain the video.

4) Manual Mode
Ø In the manual mode, the list of currently available videos appears on the left.
Ø The selected videos on the left will be synced to the chosen IP on the right by pressing

the sync button.

2. System Working Flow

10

2.2 Upload Server Managed Function (How does it work?)

2. System Working Flow

11

1. We establish two communication channels
ü Communication channel between client and the main server (using socket.io node.js).
ü Communication channel between the main server and CDNs, between one CDN with other CDNs

(using tcp socket node.js).
Ø There is one communication between clients and upload servers will be talked later.
Ø Each CDN server is started as streaming server as well as FPT server to share files, it also can be a

FTP client to get files.

2.2 Upload Server Managed Function (How does it work?)

2. System Working Flow

12

1. First, a client web admin send a synchronization request using JSON format {IP, Array of
checked videos} using socket.io browser communication.

2. Secondly, the main server gets a list of servers which has a video content among the received
array video.

3. Thirdly, it sends the gotten array (video array which contains server array).
4. Fourthly, The server with IP checks whether a video is available in local or not.
5. Fifthly, The server CDN with IP starting FTP client to get files from other CDN FTP server

which have a video content.
6. Sixthly, the IP server also updates synchronization progress to the web admin.

2.2 Upload Server Managed Function (How does it work?)

13

3. Testing
3.1 Test Case

14

3. Testing
3.2 Setting up Testing Environment

Ø Creating a bridge which connects all components (Manager, Delivery, Upload, Client)
docker network create --driver=bridge network1 --subnet=10.100.0.0/24

Ø Starting testing CDN system
Ø Starting Manage Server

docker run --network=network1 -it --name EM_Manager johnpekl/cdnmanager
./cdnManager_start.sh (Manager_IP: 10.100.0.2)

Ø Starting Upload Server
docker run --network=network1 -it --name EM_Upload johnpekl/cdnupload
./cdnUpload_start.sh (Upload_IP: 10.100.0.3)

Ø Starting Delivery Servers
docker run --network=network1 -it --name EM_Delivery1 johnpekl/cdndelivery
./cdnDelivery_start.sh (EM_Delivery1_IP: 10.100.0.4)
docker run --network=network1 -it --name EM_Delivery2 johnpekl/cdndelivery
./cdnDelivery_start.sh (EM_Delivery2_IP: 10.100.0.5)
docker run --network=network1 -it --name EM_Delivery3 johnpekl/cdndelivery
./cdnDelivery_start.sh (EM_Delivery3_IP: 10.100.0.6)

Ø Starting Client
docker run --network=network1 -dt --rm --name EM_WebClient -v /dev/shm:/dev/shm --privileged johnpekl/cdnclient

&& docker exec -it EM_WebClient /bin/bash
Client_IP: 10.100.0.7

15

3. Testing
3.3 Preparing for Client VNC (Virtual Network Computing)

Ø We can start Web-Client interface with difference options
ü Starting and listening with chosen ports

docker run --network=network1 -it --rm -p 6080:80 --name EM_WebClient -v /dev/shm:/dev/shm --privileged
johnpekl/cdnclient

ü Starting and listening with default HTTP port (80)
docker run --network=network1 -dt --rm --name EM_WebClient -v /dev/shm:/dev/shm --privileged johnpekl/cdnclient

ü Starting and allowing TCPDump inside client container
docker run --network=network1 -it --rm -p 6080:80 --name EM_WebClient -v /dev/shm:/dev/shm --cap-

add=NET_ADMIN johnpekl/cdnclient
ü Starting and allowing typing command on terminal

docker run --network=network1 -dt --rm --name EM_WebClient -v /dev/shm:/dev/shm --privileged johnpekl/cdnclient
&& docker exec -it EM_WebClient /bin/bash

ü Note: “/dev/shm:/dev/shm –privileged” allows running Google-chrome browser with –no-sandbox option inside
client container, which supports displaying our built web-interface correctly since it is based on HTML5 (bootstrap).

16

3. Testing
3.3 Preparing for Client VNC (Virtual Network Computing)

Ø Web-client interface VNC
Ø It was built based on “docker-ubuntu-vnc-desktop”, https://github.com/fcwu/docker-ubuntu-vnc-desktop
Ø We added Google-chrome and Chromium to display our HTML5-based web interface

Ø After starting the client container and connecting to the VNC by typing 10.100.0.7 on the Google-chrome browser,
open LXTerminal with the following commands as shown in the figure below

cd Desktop/
./chrome_start.sh

17

3. Testing
3.4 Connect All CDNs

Ø Typing 10.100.0.2:8000 which is the address the main server is listening
Ø Click Admin to login manager interface (User: admin, Pass: admin or it can be random values)

18

4. Functions
4.0 Main Streaming Web Interface (How does it look?)

19

4. Functions
4.1 Server Management (Connect All CDNs)

Ø Adding CDNs with its type, note, name and IP address

20

4.2 Service Management (How does it look?)

1) This function manages
streaming service of a CDN by
checking how many videos are
storing in the local CDN.

Ø We can also delete a video or
all of available video on the
local CDN.

Ø If we hover mouse over a video,
it will play as long as the mouse
points over the video.

4. Functions

21

4.3 Upload Server Managerment (How does it look?)

4. Functions

22

1. It manages clients which have video streaming with the CDN system

4.4 Client Management

4. Functions

23

4.5 Streaming Web Interface

4. Functions

24

4.5 Streaming Web Interface

4. Functions

1. Auto-Play: Enables automatic startup of the media once the media is loaded
2. Loop: Enables looping of the media once playback has completed
3. Local-Storage: Enables local storage of player state (last bitrate, a/v or text track etc). This is then used when the next time

media is played.
4. Fast Switching ABR (Adaptive Bitrate): Enables faster ABR switching (time to render). Only when the new quality is

higher than the current.
5. Buffer Occupancy ABR: BOLA (Buffer Occupancy based Lyapunov Algorithm) is an ABR ruleset. When enabled, it will

disable the default heuristics in Dash.js that depend strictly on average and real-time throughput measurements

25

4.5 Streaming Web Interface (Right Panel Parameters)

4. Functions

1. Buffer Length: The length of the forward buffer, in seconds.
2. Bitrate Downloading: The bitrate of the representation being downloaded.
3. Index Downloading: The representation index being downloaded and appended to

the buffer.
4. Current Index / Max Index: The representation index being rendered.
5. Dropped Frames: The absolute count of frames dropped by the rendering pipeline

since play commenced.
6. Latency (min|avg|max): The minimum, average and maximum latency over the last

4 requested segments. Latency is the time in seconds from request of segment to
receipt of first byte.

7. Download (min|avg|max): The minimum, average and maximum download time for
the last 4 requested segments. Download time is the time in seconds from first byte
being received to the last byte.

8. Ratio (min|avg|max): The minimum, average and maximum ratio of the segment
playback time to total download time over the last 4 segments

26

5.1 Introduction of Node.js

5. Node.js Implementation

Ø Asynchronous Programming: Node.js uses a module architecture to simplify the
creation of complex applications.

Ø Every function in Node.js is asynchronous. Therefore, everything that would
normally block the thread is instead executed in the background.
ü This is the most important thing to remember about Node.js. For example, if

you are reading a file on the file system, you have to specify a callback
function that is executed when the read operation has completed.

Ø Node.js is only an environment - meaning that you have to do everything yourself.
There is not a default HTTP server, or any server for that matter.
ü This can be overwhelming for new users, but the payoff is a high performing

web app. One script handles all communication with the clients. This
considerably reduces the number of resources used by the application.

27

5.2 Program Structure

5. Node.js Implementation

28

5.2 Program Structure

5. Node.js Implementation

29

5.2 Program Structure (“Upload” folder)

5. Node.js Implementation

30

5.3 Logic Program (“smmc…”)

5. Node.js Implementation

Ø smmcConnection: Handling connections (socket.io and tcpConnection) from web browsers and from
delivery/upload servers to main server.

Ø smmcDASHStreaming: Handling DASH streaming request from DASH Player (web browser).

Ø smmcDatabase: Interact with database “dashservers” containing information of delivery, upload servers which
managed by main server.

Ø smmcFTPGetFile: Synchronize DASH files from upload to delivery servers.

Ø smmcMonitor: Manage CDN (delivery, upload server) and main server, it almost contains starting scripts of
CDN and main server based on input command. It mostly interacts with smmcConnection, main script of each side
(either CDN or main server) is started from here separately.

Ø smmcServerInfors: Contain delete file scripts, local file information script periodically checking and storing
information in JSON file, and JSON file containing local files information in /list folder.

Ø smmcVideoProcessUpload: Contain script to decode uploaded videos to different resolutions, and segment
them into DASH, small segment with length from 2-10 seconds with .m4s file extension.

31

5.4 Starting Node.JS script

5. Node.js Implementation

Ø We defined three different group of functions for main, upload and delivery servers.
Ø Main server starts with: node app.js –main
Ø Delivery server starts with: node app.js –delivery
Ø Upload server starts with: node app.js –upload

32

5.4 Starting Node.JS script (“app.js”)

5. Node.js Implementation

33

v Clients upload videos to server and it is processed to (Dynamic Adaptive Streaming over
HTTP) DASH content.

Transcoding Content between Cliens and Servers

5. Node.js Implementation
5.5 Processing Uploaded Video (“smmcVideoProcessUpload” folder)

34

v The progress of transcoding will be sent to clients in real-time.

Transcoding Content between Cliens and Servers

5. Node.js Implementation
5.5 Processing Uploaded Video (“smmcVideoProcessUpload” folder)

35

5. Node.js Implementation
5.6 Handle connection

v All actions are managed by the main server. All command, interaction must be passed
through the main server.

handleSocketIO.js handleTCPMonitor.js handleTCPMonitor.js

commands

Commands to
main server

Commands CDNs

Process

Sent back result

Show result Process data at other
modules

Q & A

Thank You

